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Abstract. The influence of the barrier shape on tunnelling of spin-polarized electrons through 
a vacuum gap between the tip of a scanning tunnelling microscope and a magnetic sample is 
analysed. It is shown that lhe spin-dependent transmission probability of the eleamns depends 
stcongly on the form of the barrier t the sample surface. This suggests that for a detailed 
interpretation of the images obtained by a spin-polarized scanning tunnelling microscope the 
barrier shape should be known. 

1. Introduction 

The invention of the scanning tunnelling microscope (STM) [I] has allowed studies of 
surface atomic structures. This technique has potential to become a powerful tool also 
for investigations into surface magnetism [2-6]. It is hoped that STMs with spin-resolving 
properties (SP STMS) can be realized by using an STM tip as the source of spin-polarized 
elect". A solution to this problem may be a tip made out of a ferro- or antiferromagnetic 
material [3,4]. 

Recently, spin-dependent tunnelling of electrons between an optically pumped 
semiconducting (e.g. GaAs) tip and a ferromagnetic sample has been analysed [6]. The 
results show a significant spin asymmeiry of the spin-polarized current, depending on the 
angle between the spin orientation of the photoelectrons and the local magnetic moment on 
the sample surface. However, it was found that this asymmetry depends strongly on the 
barrier height, U ,  even reversing its sign in the region of U < 1.75 eV. 

In the theoretical investigation mentioned above [6] the tunnelling barrier was assumed 
to be rectangular in shape. The rectangular tunnelling potential has also been used 
in calculations of the flow of spin-polarized electrons through junctions between two 
ferromagnets [7] or between a ferro- and an antiferromagnet [3]. This can hardly be a 
realistic choice and therefore the problem should be analysed by using a barrier that is 
smooth on the atomic scale. 

In this paper we will discuss the influence of the barrier shape on the spin-polarized 
current between an optically pumped semiconducting tip of an STM and a ferromagnetic 
sample. 

2. Transmission probability for a smooth potential barrier 

The spin-polarized electrons are created in the conduction band (c band) of the 
semiconducting tip by illumination with circularly polarized light. Following [6] we write 
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the wavefunction (Yc(x) of these electrons as 

Y~(Z) = C,,eipr 

where g is the wavevector and C, are the amplitudes of the spin projections $(U =t) 
or -f(c =$), on the direction of the quantization axis. The spin polarization of 
the photoelectrons can be described by the spin-density matrix p with the components 
pup = C&i;. It can be parametrized as 

p = f(l+P. P) (2) 

where I is the unit 2 x 2 matrix, u~, , . ,~  are the PauIi mairices and P is the spin-polarization 
vector. Corresponding to optical pumping with polarized light P can be expressed as 

P = -nPa sin(6) (3) 

where PO is a parameter (0 < PO < 1) that defines the maximum degree of the polarization 
(P = ]PI) and sin(c) is determined by the polarization state, being 1 (-1) for right-(left-) 
hand circularly polarized light. The unit vector n points along the direction of the Iight 
propagation. 

In the ferromagnetic sample we assume nearly free electron states 

c=t.J..  (4) 

From here on the spin states ‘up’ t (‘down’ J.) define the majority (minority) spin in the 
ferromagnet. The symbols k t  and k4 represent the electron momenta at the Fermi level. 
For instance in Fe they are - 1.09 A-’ and - 0.42 A-’, respectively [8]. 

Let us now consider tunnelling of electrons through the barrier potential U ( x )  shown in 
figure 1. We suppose that the bias voltage is adjusted so that the bottom of the semiconductor 
c band is at the Fermi level of a ferromagnetic sample located in the region x > d. The 
semiconducting tip is located at Y -d. The shape of the potential U ( x )  can be adjusted 
by a parameter a so that it approaches a rectangular barrier at the limit a = 0. Physically 
‘a’ can be understood as the thickness of an electric dipole layer located on the surface of 
the sample and on that of the tip [9] .  To allow the calculations to be made analytically we 
take the potential in the form [lo] 

\U ~ eiko.s 

where 2d is the width of the barrier and H is the exchange field inside the ferromagnet. 
H defines the direction of the quantization axis (z-axis). Thus we can write H . P = Hcz 
with H = IHI. In the bulk of the ferromagnet we have U, = -U0 - Ho;. Within the 
surface layer of thickness - a  the magnitude of the spin-dependent part of U ( x )  decreases 
smoothly to zero. The meanings of the parameters U and U0 can be seen from figure 1. 

For the sake of simplicity we consider here the ID problem. As will be seen later this 
is not a principal res&iction in our case. It is also supposed that the electron effective mass 
of the semiconductor c electrons is equal to the free electron mass me. This assumption can 
be used because we are interested in the value of the spin asymmetry, A, of the tunnelling 
current. As will be seen A is insensitive to the value of the effective mass of the electrons. 



Spin-polarized scanning tunnelling microscopy 1849 ~ 

X __-_-_-_-______ 
-d d 

Figure 1. A schematic representation of the potential banier between the tip (x c -d) and 
the sample ( x  > d). E5 is the Fermi level of the ferromagnet. The zero potential is taken 
at the bottom of the c band of the tip. The energy U denotes the vacuum level; -U0 f H is 
the potential energy at the bottom of the c band of the ferromagnet. The elemon bands in the 
ferromagnet are represented by two halves of a parabola. With energy 4 EF they are occupied 
by electrons with the majority (t) or minority (4) spins. 

We treat a banier wide enough that the tunnelling rate is low. Then it is possible to use 
Bardeen's perturbation method [ 1 I] to find the transmission probability per unit time for an 
electron with spin component U ,  

ws = ( ~ ~ ~ P ) I W ' P U ( E ) .  (6) 

Here &(E)  is the density of the electron States in the ferromagnet In the ID case pa takes 
the form [12] 

The transition matrix element M,, can be given as 

Mu = - ( T Z ' / Z ~ ~ ) ( V ; ~  dWl,/dx - Ylu dVTa/dx) (8) 

where Wra and Yl0 are the wavefunctions of the electrons at the energy E < (I within the 
potentials U&) and (Il(x) respectively. The wavefunctions and their derivatives appearing 
in (8) are defined at any point inside the barrier (e.g. x = 0). 

3. "elling current asymmetry 

The wavefunction Qla is the eigenfunction ( E  < U) of the Schrodinger equation with the 
Hamiltonian 

where p = -ifid/&. The asymptotic behaviour of h,, requires that --f 0 when 
x + W. Similarly the wavefunction Wra is the eigenfunction ( E  < (I) of the SchrEdinger 
equation with the Hamiltonian 

Hr = p2/2m' + Ur(x) 
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where m’ N me is the effective mass (me is the free electron mass). At the limit x -+ -a, 
Qra must vanish. 

To find qr,, we solve the equation 

(-(h2/2m.)d2/dxZ + U/[1 +exp(-(x +d)/a)l)% = E*],,. (11) 

The result is (see the appendix) 

ql , (x )  = L,e-K(X+d)F(Ka + ika, K a  - ika; 1 + 2 K a ;  zl) (12) 

where L,, K, F(Ka + ika, K a  - ika; 1 + 2 ~ a ;  21). k and ZI are given in the appendix by 
(A13). (A3), (AS) and (Al). 

Now Wr, is found from the Schriidinger equation with the Hamiltonian defined by (10) 
and (5). The result is (see the appendix) 

Y~,, = N,eX(X-d)F(Ka + ik,a, K a  - &a; 1 + 2Ka; z,) (13) 

where Nv,  k,, and zr are given by (AIS) and (A19). 
The transmission probability w, can be calculated from (6-8). We take the values 

of the wavefunctions and their derivatives in (8) at the point x = 0 and assume that the 
tunnelling gap is wide in comparison with the value of the parameter a. Then we have 
z,(x = 0) = q(x  = 0) = exp(-d/a) N 0. At this limit (8) can be written with the help of 
(12) and (13) in the form 

M, = (h2/2m,)KNzL,e-”d. (14) 

Using (6), (7) and (14) we finally obtain 

w, = ( Z K ~ I N ,  1’1 ~,l~/m,k,,)e-“~. (15) 

The total tunnelling current is defined as 

J = (w+ + w& (16) 

where e is the electron charge. According to (2) and (14) we have 

IL,12 = P0<ILOl2 (17) 

with 

Here 0 is the angle between the quantization axis (parallel to N) and the direction of the 
light propagation (along n). With (15)-(18) the total current is 

J = Jr + JJ + (J4 - Jr)P0 cos(@ sin(() 

J, = ( ~ e ~ ~ 1 N ~ 1 ~ / L ~ 1 ~ / m , k , ) e - ~ ~ ~ .  (20) 

(19) 

with 
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Figure 2. The spin-dependent current asymmetry A for different values of the barrier height (U )  
and the thickness (a) of the electric dipole layer at the surfaces of the tip and the sample. The 
result for a rectangular banier is given by the intenection line between the surface A = A(U, a)  
and the plane n = 0. 

The asymmetry between currents of the electrons with opposite spins can be defined as 

A = (JT - J&)/(Jt + J J ) .  

By using (A13), (A18), (20) and (21) we can write 

A = ( A t  - A&)/(A? + A b )  A ,  = (K2 fk~)Sinh(2?rk,a)jr2(KQ - ik,a)12. (22)' 

To derive (22) we employed the well known formula lr(iy)I2 = a/(ysinh(n.y)), with real 
y. The dependences of A on the parameter Q and the barrier height U K~ are shown in 
figures 2 and 3. 

It was assumed above that the electron effective mass m* = m,. However, inside the 
semiconducting tip m* << m, (e.g. in the case of GaAs Y 0.07mJ. Let us define the correct 
form of (22) with the realistic value of m' inside the semiconducting tip. The change of 
m' at the tipvacuum boundary would have the effect of modifying the wavefunction Wt,,. 
These changes are obviously (see the appendix) absorbed in the coefficient LO and since 
this is spin independent they do not affect the value of A.  We can see therefore that (22) is 
valid also in the case m' << me. 

We may also neglect the dependence of A on the kinetic energy of the photoelectrons 
through K and k,  given by (A3) and (A19), respectively. This energy (h2k2/2m*) is typically 
of the order of lo-* eV [13] and is defined by the effective photoelectron temperature. In 
the case of GaAs this leads to a value of k N IO-' A-'. Since the magnitudes of K(k = 0) 
and kn(k = 0) are of the order of 14 .1  A-' we may take the values of K and k, at 
k = 0 (the errors induced in the value of A do not exceed 1%). This justifies also the ID 
approximation used to derive (22) because it is not necessary to consider k as a 3D vector 
quantity since we are totally ignoring the dependence of A on k. 
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Figure 3. The dependence of the spin-polarked current asymmetry on the payneter n at the 
banier height U = 1.75 eV. This dependence is parabolic at s d l  values (c 0.1 A) o f n .  When 
n is increased A approaches unit value exponentially. 

Using the approximations r(E) 2~ I/E and sh(E) !z E for le1 << 1, we may write at the 
limit a + 0 

A = (kt  - k+)(KZ - kTk+)/(kt + k + ) ( K 2  + ktkr).  (23) 

This expression coincides with the result obtained earlier by using a rectangular barrier 
shape [6]. 

When a is large enough A approaches exponentially a plateau corresponding to A = 1. 
This can be verified by substituting for the gamma function r(Ka - %,a) its asymptotic 
form 

As a result the current asymmetry can be written as 

Here @,, is a monotonically growing function of k o / K ,  indicating that @? > @ &  since 
kt > kl. 
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4. Discnssion and conclusions 

The dependence of the tunnelling current asymmetry on the parameters K and a (see (22)) 
is shown in figure 2. It can be seen that the result is highly dependent on the value of a 
on the scale of a few hgstroms. For values of a 2 1 the asymmetry A increases to 
nearly unity and has no zero point as in the case of the rectangular barrier 161. When a is 
increased A approaches a plateau (see (24) and (U)). Between the values of a = 0 and 
2 A the increase of A is very steep. 

From (22) and (23) we can see the limits of the validity of the assumption about the 
rectangular barrier. By expanding (22) with respect to a,  it is found that the first correction 
term is quadratic in a .  The quadratic terms are (uK)’, U’K!&, and (ak#)’. The values of K 

and k,, are typically of the order of 1 A-]. Therefore corrections to the rectangular barrier 
model are insignificant (< 1%) only when a 5 lo-’ A. This is supported also by figures 2 
and 3. According to the theory of Lang and Kohn [14] the thickness (a) of the dipole layer 
at the surface can be several Bngstroms. 

We expect that the results for other types of SP STMs would be similar to those in the 
present paper. Slonczewski remarks in [7] that the discontinuous change of the potential at 
the electrode barrier interface between two ferromagnets predicts a smaller spin-polarization 
factor than that found in experiments. This agrees qualitatively with results of the present 
calculation. 

In our model of the SP STM [6] the signal is due to modulation of the helicity of the 
circularly polarized pumping light (e.g. sin(.$) = sin(Qt)), causing in the tunnelling current 
oscillations with amplitude proportional to A ((19)-(22)). In an ideal case changes of A can 
be associated with magnetic properties of the sample surface (k,, and e). For instance within 
a ferromagnetic domain wall the rotation of the spins would cause alternations of the angle 
0. As is evident from (19), this changes the amplitude of the oscillating current signal. As 
was pointed out in section 3 this amplitude can be influenced also by local modulation of 
the potential barrier e.g. by adatoms on the surface [9]. However, the much higher values of 
A obtained by using a smoothed barrier instead of a rectangular one increase the possibility 
for practical realization of the SP STM. 

It should be noted that within the framework of Bardeen’s tunnelling theory [ll] 
employed above the magnitude of A is defined entirely by the sample surface through 
the potential U&). The surface potential of the tip, Q ( x ) ,  has impact only on the value of 
Lo (see (A13)). Since Lo is spin independent it has no effect on A .  

Finally we shall summarize the physical origin of the effects described in sections 2 and 
3. In the bulk of the ferromagnet the value of the effective potential for electrons with the 
majority spin is -U, - H and that for electrons with the minority spin is -U, + H (see (5) 
and figure 1). Within the surface region of thickness - a  these two potentials are different. 
Accordingly the classical turning points for the electrons with majority and minority spins 
are displaced from each other at some distance when the potential barrier is not rectangular 
(a E 0). On the other hand, it is well known that the probability of tunnelling through 
a potential barrier depends strongly on the barrier shape and the energy of the tunnelling 
particle. Since the potential barriers for electrons with spin ‘up’ and spin ‘down’ differ in 
the way described above the change of the parameter a gives rise to the tunnelling current 
asymmetry as shown in section 3. 
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Appendix 

We substitute a new variable 

ZI = - exp(-(x + d) /a)  

in (1 l), transforming it to the form 

Z?(I - z I ) Y ~ + z I ( ~  - ~ i ) Y ~ ~ - ( ~ * + ~ i k ~ ) a ~ Y i o  = O  

where the prime denotes the derivation d/dzl and 

K = [2m,(U - E)/h211'2 k = [2m,E/h2]'D. 

Writing 

YI"(Z1) = Wlo(zl)(zI)xu 

(A2) is transformed to 

Zl(1 - Z1)W;b + (1 - Zi)(I + 2KU)W( ,  - [ (KU)'+ (kU)*]Wlu = 0 (As) 

which is actually the hypergeometric equation [I51 

z(1 - z)u"(z) + [ y  - (or + B  + l)zlu'(z) - f fBu(2)  = 0. (A@ 

The independent solutions of (A6) are 

where the hypergeometric function F(or, B; y ;  z )  is defined by the following serial expansion 
for IzI < I: 

F(a, B ;  y ;  z) = 1 + (orB/y)z/l! + [or(or + I)B(B + l) /y(y + 1)1z2/2! + . . . . (A81 

To continue the function F(or, 8; y ;  z) analytically to the region IzI > 1 and to have 
asymptotic expansions for IzI + CO, we use the well known transformation 

where r (x)  is Euler's gamma function. 
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According to (A5) and (A6) we have 

I855 

ci=Ka+ika P=Ka- ika  y = l f k a .  W O )  

(Al), (A4), (A7), (AS) and (As) indicate that the only solution of (11) with the limit 
*lo --f 0 for x + -CO is 

w,,(x) = L,e-Y'X+d)F(ci, j?; y ;  21). (All)  

The coefficient L, is determined from the initial condition 

Qln(x) --f C,e'K.' + Rae-'" x + --CO. (A121 

For x + -W zI has the limit --CO. That is why we can use (A9) and (A10) to obtain the 
asymptote of Ql, as z1 --f --CO. By matching this with WO in (A12) we find 

La = C , L ~  LO = (K - ik)r2(Ka - ika)e- ikd/~r(~~a)r(-2ika) .  ( ~ 1 3 )  

Finally the solution of equation (11) is obtained with (Al), (AlO), (All) and (A13) in the 
form 

Y&) = C,e-X'x+d'LoF(Ka + ika, K a  - ika; I + 2Ka; zl). ( ~ 1 4 )  

The equabon for Wc is (see (5) and (10)) 

(-(??'/he) d2/dxZ + Ur(~))Yrc = E'Pcc. ( ~ 1 5 )  

The initial condition can be written as (see (4)) 

qrm(x) --f e-'&' + rue'bx x 3 W. (A161 

At the limit x -+ -cowr, must vanish. 

The final result is 
The solution of (A15), (A16) can be found in a similar way as that above to solve (11). 

Wro = N,,e"("-"F(Ka + ik,,a, K a  - ik,a; 1 + 2 ~ a ;  z,) (A17) 

with 

N, = elk+ - ik,)r2(Ka - ik ,u) /2~r(ku)r(-~ik,u)  ( A W  

and 
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